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Abstract - We report classification experiments using the 
pilot Infant COPE database of neonatal facial expressions. 
Two sets of DCT coeffiecents were used to train a neural 
network simultaneous algorithm (NNSOA) and a linear 
support vector machine (LSVM) to classify neonatal 
expressions into the two categories of pain and nonpain. In 
the first set (VAR) only 80 of the coefficients with the highest 
variance were included. In the second set (SFFS), 15 DCT 
coefficients were selected by applying Sequential Forward 
Floating Selection (SFFS) [1]. We found that NNSOA+VAR 
produced the best classification score of 95.38% accuracy, 
but with no statistical difference compared with the DCT 
sets. However, NNSOA using the DCT coefficients 
outperformed with statistical significance previous 
experiments reported in [2] that used PCA components. It is 
surmised that NNSOA, an algorithm that eliminates 
unnecessary weights, is more stable than LSVM and may be 
better than SFFS at identifying relevant features. 

Keywords: Pain Detection, Facial Expression Recognition, 
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1 Introduction 
  In this paper, we report experiments using a neural 
network simultaneous algorithm (NNSOA) and a linear 
support vector machine (LSVM) to detect pain in the facial 
expressions of neonates. NNSOA is a global search 
procedure that searches from one population of neural 
network solutions to another, focusing on the area that 
provides the current best solution, while continuously 
sampling the total parameter space. NNSOA is a slight 
modification of a genetic algorithm (GA) used in previous 
neural network studies (see [3]). NNSOA takes advantage of 
the GA’s ability to simultaneously search multiple points (or 
solutions) at one time, unlike gradient search techniques, 
such as backpropagation, that are able to search for only one 
solution at a time. 

Because NNSOA uses a genetic algorithm for the search 
procedure, it is not limited to differentiable functions, as is 
the case with gradient search techniques. Thus, NNSOA can 
have objective functions that add a penalty for the number 
of nonzero weights in a solution. NNSOA is able to 
eliminate unneeded weights in a solution by intermittently 
exchanging solution weights with hard zeros and then 

evaluating whether that substitution helped or hindered the 
network’s ability to predict using normal GA operations.  

NNSOA was shown in [4] to outperformed backpropagation 
on eleven standard problems, ranging from simple linear 
functions to complex time series and multidimensional 
production functions and a real-world problem (predicting 
energy consumption in a building taken from Prechelt's [5]. 
As far as face classification is concerned, NNSOA has only 
been applied to the neonatal pain detection problem (see [6] 
and [2]). It has successfully handled several other medical 
problems, however, including diagnosing breast lumps and 
diabetes and predicting heart disease [7]. For additional 
details regarding NNSOA, see [2]. 

In our earlier infant COPE experiments, NNSOA used 70 
PCA components as inputs. It classified the facial 
expressions into the classes of pain and nonpain with 100% 
accuracy using protocol A and 95.38% using protocol B [2].  

Protocol A presents the best-case scenario by assuming that 
samples of individual subjects are available to personalize 
the classifier, as is the case with most commercial speech 
recognition software. This protocol would be most suitable 
for home applications, where the software would be trained 
to detect the expressions of pain in individual infants. In 
protocol A, multiple but different samples of neonatal pain 
and nonpain facial expressions from all subjects are used in 
the testing and training sets.  

Protocol B presents the worst-case scenario by assuming 
that the classifier will be trained on one set of subjects and 
then applied out of the box to an unknown set of future 
newborns. In this evaluation protocol, images are divided by 
subject, and the testing set contains images of subjects that 
are not used in the training set. Protocol B is more realistic 
for medical uses, as hospital stays for most newborns are 
between three and four days. This protocol is also the most 
difficult to classify. 

Various support vector machines, especially LSVM, have 
produced classification scores using PCA components that 
compare well with NNSOA. In [8] and [2], we performed 
comprehensive investigations of SVM using five kernels: 
linear, RBF, and polynomials of degree 2, 3, and 4. Using 
protocol A, SVM with polynomial of degree 3 produced the 



 

best results of 88.00% accuracy. Using protocol B, LSVM 
produced the best results with 82.39% accuracy. 

The experiments presented in this paper compare NNSOA 
and LSVM using protocol B. Inputs to the systems are DCT 
coefficients that were selected based on the variance and on 
employing SFFS [1]. 

The remainder of this paper is outlined as follows. In section 
2, we briefly describe the Infant COPE database and study 
design. In section 3, we provide a brief outline of NNSOA. 
Details of our experimental design are provided in section 4, 
and the results are reported in section 5. Finally, in section 
6, we conclude this paper by discussing directions for 
further research. 

2 Infant COPE database design 
 The pilot Infant COPE (Classification Of Pain 
Expressions) database, which we developed, was used in all 
the classification experiments reported in this paper. This 
database contains 204 photographs of 26 Caucasian 
neonates (13 boys and 13 girls) ranging in age from 18 
hours to 3 days old. 

Photographs were taken of the infants at baseline rest and 
while experiencing several noxious stimuli: bodily 
disturbance, an air stimulus on the nose, friction on the 
external lateral surface of the heel, and the pain of a heel 
stick. The goal of the Infant COPE study design was to 
obtain a representative and challenging set of facial images 
for classification experiments. Figure 1 illustrates some of 
the challenges presented by the images. This figure 
compares crying images that were triggered by a nonpain 
stimulus with crying images that were triggered by the pain 
stimulus. 

 
Figure 1. Illustration of challenging Infant COPE facial 

images. 

For the pain detection problem, all images of the stimuli are 
divided into the two categories of pain (60 images) and 
nonpain (140 images).  

For a detailed description of the database and study design, 
see [6]. 

3 NNSOA 
 As noted in the introduction, gradient search 
techniques, such as backpropagation, used for searching for 
optimal weights in a neural network (NN) solution, do not 
have the ability to zero out weights that have no value in a 
solution. The search must find a solution that has values for 
these unneeded weights. This works well for training data 
but is likely to introduce additional errors in the estimates 
when these solutions are applied to out-of-sample data. A 
solution found by the NNSOA completely eliminates this 
possibility of additional error because the unneeded weights 
are set to a hard zero. This ability to zero out weights in a 
solution provides additional feature reduction since those 
inputs that are of no value to a solution are basically 
removed from the solution. In addition, those inputs that 
offer the most value can easily be isolated by examining the 
weights of the NN solution. 

Another advantage offered by NNSOA is that it finds the 
appropriate NN architectures by searching for the correct 
number of hidden nodes in a solution. This is done by 
starting a network with only one hidden node. After a user 
specified number of generations (MAXHID), the best 
solution out of the population of solutions is saved, and an 
additional hidden node is added to the architecture and 
trained for another MAXHID generation. The previous best 
solution is included in this additional training by replacing 
one of the randomly initialized solutions with the best 
solution found in the previous architecture. Since adding an 
additional node to the architecture increases the number of 
weights in the solutions equal to the number of inputs plus 
one, the additional weights for this best solution are set to 
hard zeros. The process of adding an additional hidden node 
after every MAXHID generation continues until the current 
best solution is worse than the previous architecture’s best 
solution. At this point, the number of hidden nodes is set to 
the number of hidden nodes in the previous architecture, and 
the NN continues with the training process for a user 
defined number of generations. Once the MAXGEN number 
of generations has been reached, training is complete.  

Below we offer an outline of NNSOA operations. 

3.1 Outline of NNSOA 
 NNSOA classification can be broken down into the 
following operations: initialization, evaluation, 
reproduction, crossover, mutation 1, mutation 2, 
convergence enhancement, and termination.  

 Initialization. A population of 12 solutions is created by 
drawing random real values from a uniform distribution [-1, 
1] for input weights. The output weights are determined by 
ordinary least squares (OLS). 



 

Evaluation. Each member of the current population is 
evaluated by an objective function based on its sum-of-
squared-error (SSE) value in order to assign each solution a 
probability for being redrawn in the next generation. To 
search for a parsimonious solution, a penalty value is added 
to the SSE for each nonzero weight (or active connection). 
The penalty for keeping an additional weight varies during 
the search and is equal to the current value of the root mean 
squared error (RMSE). This means that the penalty for 
keeping additional weights is high at the beginning of the 
training process when errors are high. As the optimization 
process gets closer to the final solution, errors decrease and 
the penalty value becomes smaller. Based on the objective 
function, each of the 12 solutions in the population is 
evaluated. The probability of being drawn in the next 
generation is calculated by dividing the distance of the 
current solution’s objective value from the worst objective 
value in the generation by the sum of all distances in the 
current generation. 

Reproduction. A mating pool of 12 solutions is created by 
selecting solutions from the current population based on 
their assigned probability. This is done by selecting a 
random number in the range of 0 to 1 and comparing it to 
the cumulative probability of the current solution. When it is 
found that the random value is less than the current 
solution’s cumulative probability, the current string is drawn 
for the next generation. This is repeated until the entire new 
generation is drawn. It should be noted that a given solution 
can be drawn more than once or not at all, depending on its 
assigned probability. 

Crossover. Once reproduction occurs, providing a 
combination of solutions from the previous generation, the 
12 solutions are then randomly paired so that 6 pairs are 
produced. A point is randomly selected for each pair. New 
solutions are produced by switching the weights above the 
randomly generated point. In this fashion, 12 new solutions 
are generated for the next generation. 

Mutation 1. For each weight in a population of solutions, a 
random number is drawn; if the random value is less than 
0.05, the weight is replaced by a value randomly drawn 
from the entire weight space. By doing this, the entire 
weight space is globally searched, thus enhancing the 
algorithm’s ability to find global solutions. 

Mutation 2. For each weight in the population of solutions, a 
random number is drawn; if the random value is less than 
0.05, the weight is replaced by a hard zero. As a result of 
doing this, unneeded weights are identified as the search 
continues for the optimum solution. After this operation is 
performed, this new generation of 12 solutions begins again 
with evaluation, and the cycle continues until it reaches 70% 
of the maximum set of generations. 

Convergence Enhancement. Once 70% of the maximum set 
of generations has been completed, the best solution 
replaces all the strings in the current generation. The 
weights of these 12 identical solutions are then modified by 
adding a small random value to each weight. These random 
values decrease to an arbitrarily small number as the number 
of generations increases to its set maximum number. 

Termination. The algorithm terminates on a user specified 
number of generations.  

 

4 Experimental Design 
 This section describes experimental results using 
NNSOA and LSVM to classify the 204 images in the Infant 
COPE database into the binary categories of pain and 
nonpain. Input into NNSOA and LSVM were the pixel 
values of the images transformed using the DCT transform 
and two feature reduction techniques. As illustrated in figure 
2, the experimental procedures can be divided into the 
following stages: image preprocessing, feature 
transformation and selection, and classification. 

In the preprocessing stage, images were normalized. Images 
were rotated and scaled so that the faces were approximately 
equal in size and the eyes intersected the same horizontal 
axis. The original images, size 3008 x 2000 pixels, were 
reduced to 100 x 120 pixels and cropped. The rows of pixels 
within the images were then concatenated to form an input 
vector of dimension 12000 with entries ranging in value 
between 0 and 255. 

 
Figure 2. LSVM and NNSOA Classification Systems.  

In the feature transformation and selection stage, the DCT 
transform was used to reduce the dimensionality of the raw 
input vectors. Two variable reduction techniques were 
employed. In the first, DCT coefficients were sorted by 
variance, as in [9], and feature reduction was accomplished 
by performing a series of LSVM experiments that 
determined the top 80 coefficients were optimal for the 
classification task. In the experiments reported in this 
section, we label this feature set VAR. In the second 
technique for variable reduction, Sequential Forward 
Floating Selection (SFFS) [1], was used to select a feature 
set of only 15 DCT coefficients. The SFFS selection 



 

criterion function was the minimum error of LSVM 
classification. This feature set, which we label SFFS, 
contained the following DCT coefficients: 4, 804, 903, 403, 
1006, 402, 2, 13, 1401, 1204, 109, 215, 603, 1010, and 707. 
SFFS was implemented using the MATLAB toolbox 
PRTools 3.1.7 [10]. Both sets of DCT coefficients were 
normalized to [0, 1]. 

In the classification stage, LSVM and NNSOA experiments 
were performed with both sets of DCT inputs. We label the 
classifier/input combinations LSVM+VAR, LSVM+SFFS, 
NNSOA+VAR, and NNSOA+SFFS. Following protocol B, 
images are divided by subject, and the testing set contains 
subjects that are not used in the training set. Thus, a total of 
26 experiments were performed by each of the four 
classifier combinations. That is, for each of the 26 subjects 
in the database, the set of facial images for that subject 
formed the testing set, and the facial images of the 
remaining 25 subjects formed the training set. The 
classification scores for each experiment were computed by 
averaging the number of correct classifications made. 

5 Results 
Tables 1 and 2 present the classification scores and 
95% confidence intervals for the four classifier 
combinations. Examining these tables, we see that 
NNSOA+VAR has the highest classification rate of 
95.38% accuracy, with a 95% confidence interval of 
± 2.81%. NNSOA+VAR also has the lowest standard 
deviation of 6.97%. It is, therefore, the most stable 
method of classification.  

An unexpected result is the slightly lower classification 
score for NNSOA+SFFS compared with the 
NNSOA+VAR classification score. Recent criticisms 
have been levied against SFFS. In [11], for instance, 
experiments were conducted that showed SFFS does 
not necessarily yield the best subsets. It may be the 
case that NNSOA is superior to SSFS in isolating 
relevant DTC coefficients. This may be due to 
NNSOA’s mechanism of eliminating unneeded inputs. 
However, new studies will need to be conducted to 
evaluate whether this is the case, since, as can be seen 
in Table 2, there is no statistical difference in 
performance between NNSOA+VAR and 
NNSOA+SFFS. In fact, using DCT inputs there is no 
statistical difference in the classification performance 
of any of the four classifier combinations. 

 

Table 1. Average and all 26 subject classification scores. 

Subj. LSVM+VAR LSVM+SFFS NNSOA+VAR NNSOA+SFFS
1   88.89%   77.78%   88.89% 100.00% 
2 100.00% 100.00% 100.00% 100.0%0 
3 100.00%   87.50%   87.50% 100.00% 
4   80.00% 100.00% 100.00% 100.00% 
5   66.67%   75.00%   75.00%   83.33% 
6   85.71%   85.71%   85.71%   85.71% 
7   88.89%   77.78%   88.89%   77.78% 
8 100.00%   88.89%   88.89% 100.00% 
9   50.00%   66.67% 100.00%   66.67% 
10 100.00%   90.00% 100.00%   90.00% 
11 100.00% 100.00% 100.00% 100.00% 
12 100.00%   75.00%   87.50%   75.00% 
13   90.00%   90.00%   90.00%   90.00% 
14 100.00% 100.00% 100.00% 100.00% 
15   83.33% 100.00% 100.00% 100.00% 
16   83.33%   91.67% 100.00% 100.00% 
17 100.00% 100.00% 100.00% 100.00% 
18 100.00% 100.00% 100.00% 100.00% 
19   85.71% 100.00% 100.00% 100.00% 
20   75.00% 100.00% 100.00% 100.00% 
21 100.00% 100.00% 100.00% 100.00% 
22   75.00%   62.50%   87.50%   87.50% 
23   83.33% 100.00% 100.00% 100.00% 
24 100.00% 100.00% 100.00% 100.00% 
25   40.00% 100.00% 100.00% 100.00% 
26 100.00%   50.00% 100.00%   66.67% 
Ave.   87.53%   89.17%   95.38%   93.14% 

 

In table 3, we compare LSVM and NNSOA using DCT 
with PCA components. In our previous experiments [2, 
8], the first 70 PCA coefficients were used. PCA 
coefficients are ordered, with each one accounting for 
the most variation among a set of faces. In [2], which 
used the same experimental protocol used in this study, 
NNSOA+PCA had the highest classification rate of 
90.20% accuracy and LSVM+PCA had a classification 
rate of 82.35%. Using the DCT coefficients, NNSOA 
has outperformed LSVM+PCA with statistical 
significance. 

More detailed discussions of the NNSO and LSVM 
parameters used in the DCT experiments are provided 
below. 



 

Table 2. Standard Deviation of DCT Experiment Scores and 
95% Confidence Intervals.  

Method 95% Confidence Interval Standard Deviation 
LSVM+VAR 87.53% ±  6.47% 16.01% 
LSVM+SFFS 89.17% ±  5.69% 14.09% 

NNSOA+VAR 95.38% ±  2.81%   6.97% 
NNSOA+SFFS 93.18% ±  4.40% 10.90% 
LSVM+PCA 82.35% ±  6.20% 15.34% 
NNSOA+PCA 90.20% ±  4.16% 10.30% 

The 95% Confidence Intervals were computed using t 

distribution ( x  ±  2/αt /s n ). 

Table 3. Standard Deviation of PCA Experiment Scores and 
95% Confidence Intervals 

Method 95% Confidence Interval Standard Deviation 
LSVM+PCA 82.35% ±  6.20% 15.34% 

NNSOA+PCA 90.20% ±  4.16% 10.30% 

As reported in [2]. 
 
5.1 NNSOA experiments 
A total of 26 separate NNs were trained and tested for 
the two DCT coefficient sets. For all experiments, 
MAXHID and MAXGEN were set to 100 and 5,000 
respectively. The objective function used in the 
experiments is as follows: 
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where N is the number of observations in the dataset, O 
is the observed value of the dependent variable, Ô is 
the NN estimate, and C is the number of nonzero 
weights in the network. 

For these experiments, the output weights were found 
by using ordinary least squares, i.e., by regressing the 
outputs from the hidden nodes onto the real outputs. In 
this way only values for the input weights were 
searched. 

The average number of hidden nodes for the 26 
NNSOA+VAR networks was 3.31. Since there were 80 
inputs + 1 bias, each additional hidden node added 81 
weights to the architecture, making the average number 
of weights overall 268.11 (81 ×  3.31). However, since 
the NNSOA eliminated unneeded weights by turning 
most of them to zero, the actual average real valued 

weights was 27.04. The reduction of weights on 
average was over 90%. 

In the NNSOA+SFFS data, the inputs were already 
reduced, thus the number of hidden nodes was set to 
15. Since there were 15 inputs + 1 bias, each additional 
hidden node added 16 inputs to the solution, making 
the number of weights in the solution 256 (16 ×  16). 
Because NNSOA eliminates weights in a solution by 
zeroing out the weights that are not useful for 
prediction, the average number of weights across the 26 
NNSOA+SFFS NNs was much smaller. On average, 
only 19.5 of the average total of 256 possible weights 
were found to be nonzero. 

An added advantage of eliminating unneeded weights 
is the identification of relevant input variables. The 
input variables that had all zero weight connections 
were not used in producing estimates. As a result, the 
average number of inputs that were actually used in 
NNSOA+VAR prediction across the 26 networks was 
reduced from 80 to an average of only 21.88. 

In NNSOA+SFFS, all 15 DCT coefficients selected by 
SFFS were found relevant for classification. Thus none 
were eliminated by NNSOA. 

All NNSOA experiments were conducted on a 1.5 GHz 
machine, using the Windows XP operating system. The 
core code of the NNSOA program was written in 
FORTRAN, with Visual Basic used for the interface. 

5.2 LSVM experiments 
LSVM performed the 26 experiments defined by 
evaluation protocol B using the regularization 
parameter, C=1, and the bandwidth parameter, γ = 1. 
These values were determined using a grid search. All 
LSVM experiments were processed in the MATLAB 
environment using the OSU SVM Classifier MATLAB 
Toolbox developed by Ohio State University. 

6 Conclusion 
Determining which algorithm, NNSOA and LSVM, is 
best for this classification task is not a simple matter. In 
our discussion of results and comparison of our 
experiments using DCT components with our earlier 
experiments using PCA components, NNSOA appears 
to have the classification edge. However, since LSVM 
is comparable in its classification rates and several 
SVM MATLAB packages are freely available, LSVM 
may be the algorithm of choice.  



 

It may prove possible to combine LSVM with NNSOA 
to obtain even better classification scores. In our 
opinion, these two classification methods offer 
complementary information about the patterns to be 
classified, and it is well known in the literature that 
classifier ensembles that enforce diversity fare better 
than ones that do not [12].  

In future studies we shall investigate ensemble schemes 
using NNSOA and LSVM, as well as other classifier 
combinations. We also plan to conduct studies 
investigating NNSOA as a feature selector as it appears 
to select fewer, yet perhaps more essential, components 
for classification. 
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